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which is reduced for large M to
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Therefore we have
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Then, using Eq. (B3), we have the asymptotic form
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Now we find that the factor e, [2rX (e.)/| X" (e.) | J42
is neglected in the expression of Eq. (2.12).

Em Ju=e2x/| V" (eo)| J¥2. (B7)
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Optical-phonon frequencies of ordered solid Hy and D, have been calculated using a Lennard-Jones
intermolecular potential derived from measurements of gas-phase properties. Good agreement with experi-
ment is obtained. Density-of-states functions and phonon dispersion curves in three directions have also

been computed.

INTRODUCTION

HE lattice dynamics of solid hydrogen and deu-
terium cannot be treated by the traditional
harmonic approximation.! The molecules are so light
and the intermolecular forces so weak that the zero-
point kinetic energy is equal to about half of the subli-
mation energy,? and the harmonic approximation, when
attempted, gives imaginary energies of excitation.?
Nosanow and Werthamer? have developed a means
of treating the lattice dynamics of such crystals and
have reported reasonable agreement between calculated
and experimental sound velocities in solid *He and “He.
We report here the application of this method to the
calculation of phonon frequencies and density-of-states
functions for the fcc phases of orthohydrogen and para-
deuterium. A similar calculation has recently been done
for hexagonal hydrogen by Mertens and Biem.?
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The approach of Nosanow and Werthamer assumes
a ground-state wave function of the form

1/10(1‘1,1'2, e ;r") =H ¢0(ri_7‘i) kI<I1 f(Irk —I l ) ) (1)

where ¢o(r—=) is a function of one molecule at r,
the equilibrium position of which is a lattice point
7, and the short-range correlation functions f(p)
=exp(—K[ (¢/p)2—(c/p)%]). Here K is a variational
parameter and the intermolecular potential v(p)
=4¢[ (0/p)2—(0/p)¢], with® e=37.00°K and ¢=2.928

. An approximate treatment’” has shown that for solid
helium an appropriate ground-state one-particle func-
tion is

bo(r) = (4 /m)Plte 472, 2

The effect of the short-range correlations may be
looked upon as a replacement of the assumed inter-
molecular potential v(p) by an effective potential*

W (p)=[v(p) — (#*/2u) V*Inf(p) 1 f*(0) (3)

where u is the molecular mass. By using linear response
theory and several approximations, it is found that the

6 J. O. Hirschfelder, E. F. Curtiss, and R. B. Bird, Molecular
Theory of Gases and Liquids (John Wiley & Sons, Inc., New York,
1954), p. 1110.
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Tazsie I. Constants used in calculation and ground-state energy.
Crystal & a® dob A K/4e E, (calc) Eq¢° (expt)
H, 37.00°K 2.928 X 3.757 & 3319 A~ 0.2404 —152.4 cal mole™ —248 cal mole™
Dy 37.00°K 2928 X 3.592 A 5.7099 A2 0.2856 —261.0 cal mole™
2 Reference 6.
b Reference 8.
¢ Reference 2.
phonon frequencies are roots of the equation® nons have been observed by far-infrared absorption
spectroscopy!® proving there is more than one molecule
. per primitive unit cell. The quadrupole-quadrupole
’ ‘¢ . . .
det #‘*’25(?’5@’_2;. exp{ik-[=(p,¢") —=(0,9) 1} interaction between hydrogen molecules is thought to
be the origin of this ordering.!* However, this interaction
3200 | W (|r(p,q") —1(0,9)|)|00) has a small effect on the phonon frequencies and has
=0, (4) been neglected in this calculation, so that the potential

an(p)q’)an' (0#])

where {=x, v, z; p labels the unit cell; and ¢, ¢’ label
the site in the unit cell. Equation (4) is the same equa-
tion as that obtained from the harmonic approximation,
except that the average of the effective potential W (o)
over the ground-state distribution of the two interacting
molecules has been substituted for the intermolecular
potential v(p). When this substitution is made, the
roots of the secular equation are all positive and the
frequencies real.

At low temperatures, orthohydrogen and paradeuter-
ium (the species with J=1) crystallize in an fcc
lattice.®? Neutron-diffraction experiments® on deu-
terium indicate that the space group is Pa3 (T%4°%);
o-hydrogen is assumed to have the same space group.
This structure contains four molecules per primitive
unit cell arranged in an fcc array, but with the molecules
differentiated by orientational ordering. Optical pho-

function used is spherically symmetric. This means that
the potential cannot distinguish the different sites in
the unit cell and the effective space group is, therefore,
Fm3m (045).

Since the wave functions used for the ground and
first-excited states have the same symmetry properties
as harmonic-oscillator functions, the group-theoretical
treatments of this problem and of the harmonic ap-
proximation are exactly alike.

CALCULATION

The parameters ¢ and ¢ in the Lennard-Jones po-
tential function are those obtained from the second
virial coefficients of gaseous Hp and D,.® The nearest-
neighbor distances d, are taken from the x-ray data of
Mills and Schuch.?

The energy of the ground state is approximated by the

TasiE II. Dynamical matrix.

¥1 Y1 21 X2 B2 22 X3 y3 23 X4 Y4 24
1 2X+Z2b 0 0 —XCw)° —VS@de 0 —ZC(v)t 0 0 —XC(w)s 0 —VS(w)h
2X+Z 0  —VS@w —XCu) 0 0 —XC@) —VS@)! 0 —ZC(w) 0
2X+2 0 0 —ZC(u) 0 —VS@) —XCl) —VSw) 0 —XC(w)
2X+2 0 0 —XC(w) 0 —VS@) —ZC(v) 0 0
2X+7Z 0 0 —ZC(w) 0 0 —XC@ —VS@®
2X+Z  VS@) 0 —XC(w) 0 —VS@ —XC()
2X+-Z 0 0 —XCu) —VSu) 0
2X+7Z 0 —VSwm) —XC(u) 0
2X+Z 0 0 —ZC(u)
2X+Z 0 0
2X+-Z 0
2X+Z

aX = 7+2[62Veff/6RZIR_d“—(I/du)aVeff/aR[ Rwdy]=210.558 erg cm™2,
b7Z= (4—/du)¢'~)Ven/aRl R-dy=8.35356 erg cm™

¢ C(u) =cos(:kzao)cos (3kya0).

4V = —2[82Vess/OR?| R=an-(1/do)6Veﬂ/aR[ Rady] = —208.470 erg cm™2,
e .S (u) =sin(}kza0) sin (3kya0).

£ C(v) =cos(3kyao) cos(3kza0).
& C(w) =cos(3k2a0) cos(3kza0).
h S (w) =sin(3k:a0) sin(3kza0).
i §(v) =sin(3kya0) sin(}k:a0).
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9K.F. Mucker S. Talhouk, P. M. Harris, D. White, and R. A. Erickson, Phys. Rev. Letters 16, 799 (1966).
10W. N. Hardy, I F. Sllvera, K. N. Klump, and O. Schnepp, Phys. Rev. Letters 21,291 (1968)
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F16. 3. Hydrogen phonon dispersion curve [100].

Minimizing E, gives values for 4 and K. The parame-
ters used are shown, with the calculated E,, in Table I.

G The values of 4 and K so obtained are used to com-

pute 9V e/dR and 82V i/ AR, where Vet =($o(1)o(7) |
W(Iri—rj[ ) l¢0(1)¢0(])> and R= l 10—1]-[ . Although

in the computation of E,y, the sum over j must be an
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extensive lattice sum, the phonon frequencies are

given with an error of less than 39, by a sum over
nearest neighbors only. In the present paper, the dy-
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F16. 6. Deuterium phonon dispersion curve [111].
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TasirE III. Frequencies of optical phonons.

Symmetry
Crystal Calc #(cm™) species Obs #(cm™1)#

H, 63.8 T A Fn 62.2

87.0 Tu 80

93
Dy 53.1 Ty, Fu 57.4
734 Ty 74.5

85

a Reference 10.

namical matrix has been computed by neglecting all
but nearest-neighbor interactions. The only difference
between the form of this matrix and that of an fcc
atomic lattice in the harmonic approximation is that we
have not assumed that dVee/dR=0. This quantity is
small however. The dynamical matrix is shown in
Table II.

This matrix is computed and diagonalized by com-
puter at each of 816 points in that section of the first
Brillouin zone bounded by the planes £.=0, k,=%,,
ky=Fk., and k,=m/a,, where a, is the lattice constant.
This™ comprises 1/48 of the zone. The other parts are
obtained by symmetry, so that frequencies are computed
at 27 000 points in the first Brillouin zone for the simple-
cubic primitive cell of 7,%(Pa3).

- RESULTS

The computed density-of-states functions are shown
in Figs. 1 and 2; the dispersion curves in the [100] and
[111] directions in Figs. 3-6.

The calculated and experimental'® frequencies of the
optical phonons are given in Table ITI. The calculation
and experiment are in very good agreement. There are
four optical phonons: two of T, symmetry, which are
optically active, and one each of 4, and E, symmetry,
which are optically forbidden. However, in the absence
of an angle-dependent term in the potential, the 4,
E., and lower frequency 7", phonons are all degenerate.
We are unable to explain the experimental observation
of three absorption bands.!® We suppose that the extra
band arises from two-quantum excitations of some
kind. A structural mechanism has also been proposed.’®

2 J. Grindley and R. Howard, in Proceedings of the International
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R. F. Wallis (Pergamon Press, Ltd., Oxford, 1965), p. 129; O.
Schnepp and A. Ron, Discussions I'araday Soc. (to be published).

13W. N. Hardy, I. F. Silvera, and J. P. McTague, Phys. Rev.
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